Senin, 03 Juni 2013

PENERAPAN SISTEM BILANGAN DIGITAL

Sistem Bilangan Digital

Banyak sistem-sistem bilangan yang digunakan pada teknologi digital. Yang paling umum adalah sistem-sistem desimal, biner, oktal dan heksadesimal. Sistem desimal adalah yang banyak dikenal karena sering digunakan setiap hari. Dengan mempelajari karakteristiknya akan membantu memahami sistem-sistem bilangan lain secara lebih baik.
1. Sistem Desimal
Sistem desimal tersusun atas 10 angka atau simbol, yang dikenal dengan digit. Ke-10 simbol ini adalah  0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Sistem desimal juga disebut sistem basis-10, karena mempunyai 10 digit. Kenyataannya, kata ”digit” adalah kata latin yang berarti ”jari-jari”.
Sistem desimal adalah suatu sistem nilai posisional di mana nilai dari suatu digit tergantung kepada posisinya. Misalnya perhatikanlah bilangan desimal 634 ini artinya digit 4 sesungguhnya menyatakan 4 satuan. 3 menyatakan 3 puluhan dan 6 menyatakan 6 ratusan. Ringkasnya, 6 merupakan yang paling berbobot dari ketiga digit, dikenal sebagai Most Significant Digit (MSD). 4 bobotnya paling kecil dan disebut Least Significant Digit (LSD). Perhatikan contoh lain, 75.25. Bilangan ini sesungguhnya sama dengan tujuh puluh plus lima satuan plus dua persepuluh plus lima perseratus.
2. Sistem Biner
Hampir semua sistem digital menggunakan sistem bilangan biner sebagai dasar sistem bilangan dari operasinya, meskipun sistem-sistem bilangan lain sering digunakan secara bersama-sama dengan biner. Dengan menggunakan 2 level yang ada pada sistem biner maka sangatlah mudah untuk mendesain rangkaian – rangkaian elektronik yang akurat dibandingkan dengan menggunakan 10 level yang ada pada sistem desimal.
Dalam sistem biner, hanya ada 2 simbol atau digit yaitu 0 dan 1 yang dikenal juga dengan system basis-2. Sistem biner ini dapat digunakan untuk menyatakan setiap kuantitas yang dapat dinyatakan dalam desimal atau sistem bilangan yang lainnya.
Sistem biner juga suatu sistem nilai posisional, dimana tiap-tiap digit biner mempunyai nilainya sendiri atau bobot yang dinyatakan sebagai pangkat 2.
Tabel berikut menunjukkan urutan hitungan pada system bilangan biner.

3. Menyatakan Kuantitas-Kuantitas Biner
Dalam system digital informasi yang akan diproses biasanya dinyatakan dalam bentuk biner. Kuantitas biner dapat dinyatakan dengan setiap alat yang hanya mempunyai dua kondisi kerja. Sebagai contoh sebuah saklar yang hanya mempunyai kondisi terbuka yang menyatakan biner 0 atau kondisi tertutup yang menyatakan biner 1.
Gambar 1. Menggunakan saklar untuk menyatakan bilangan-bilangan biner
Pada sistem-sistem digital elektronik, informasi biner dinyatakan oleh sinyal-sinyal listrik yang terdapat pada input dan output dari berbagai macam rangkaian-rangkaian elektronik. Dalam sistem ini, biner 0 dan 1 dinyatakan oleh dua tegangan  yang ekstrim berlawanan. Misalnya biner 0 dapat dinyatakan dengan harga nominal 0 volt dan biner 1 dinyatakan dengan 5 volt. Untuk lebih jelasnya perhatikan gambar 1.5 berikut.
Biner 1            : tegangan antara 2V sampai 5V
Biner 0            : tegangan antara 0V sampai 0.8 V
Tegangan antara 0.8V sampai 2V tidak digunakan, karena akan menyebabkan kesalahan dalam rangkaian digital.
Gambar 1. Bentuk sinyal digita


MATERI KE 2

Sistem Bilangan Digital

Sistem bilangan desimal adalah sistem bilangan yang menggunakan 10 macam angka dari 0,1, sampai 9. Setelah angka 9, angka berikutnya adalah 1 0, 1 1, dan seterusnya (posisi di angka 9 diganti dengan angka 0, 1, 2, .. 9 lagi, tetapi angka di depannya dinaikkan menjadi 1). Sistem bilangan desimal sering dikenal sebagai sistem bilangan berbasis 10, karena tiap angka desimal menggunakan basis (radix) 10, seperti yang terlihat dalam contoh berikut:
angka desimal 123 = 1*102 + 2*101 + 3*100
sistem bilangan biner(basis 2), sistem bilangan/ angka oktal (basis 8), dan sistem angka heksadesimal (basis 16) yang merupakan dasar pengetahuan untuk mempelajari komputer digital. Bilangan oktal dibentuk dari bilangan biner-nya dengan mengelompokkan tiap 3 bit dari ujung kanan (LSB). Sementara bilangan heksadesimal juga dapat dibentuk dengan mudah dari angka biner-nya dengan mengelompokkan tiap 4 bit dari ujung kanan.
Oktal atau sistem bilangan basis 8 adalah sebuah sistem bilangan berbasis delapan. Simbol yang digunakan pada sistem ini adalah 0,1,2,3,4,5,6,7. Konversi Sistem Bilangan Oktal berasal dari Sistem bilangan biner yang dikelompokkan tiap tiga bit biner dari ujung paling kanan (LSB atau Least Significant Bit).
Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.
Heksadesimal atau sistem bilangan basis 16 adalah sebuah sistem bilangan yang menggunakan 16 simbol. Berbeda dengan sistem bilangan desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya dengan menggunakan huruf A hingga F
Konversi dari heksadesimal ke desimal
Untuk mengkonversinya ke dalam bilangan desimal, dapat menggunakan formula berikut:
Dari bilangan heksadesimal H yang merupakan untai digit hnhn − 1...h2h1h0, jika dikonversikan menjadi bilangan desimal D, maka:
clip_image001
Sebagai contoh, bilangan heksa 10E yang akan dikonversi ke dalam bilangan desimal:
  • Digit-digit 10E dapat dipisahkan dan mengganti bilangan A sampai F (jika terdapat) menjadi bilangan desimal padanannya. Pada contoh ini, 10E diubah menjadi barisan: 1,0,14 (E = 14 dalam basis 10)
  • Mengalikan dari tiap digit terhadap nilai tempatnya.
clip_image002
= 256 + 0 + 14
= 270
Dengan demikian, bilangan 10E heksadesimal sama dengan bilangan desimal 270

Tidak ada komentar:

Posting Komentar